Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Epidemiol Infect ; 150: e171, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2133093

ABSTRACT

Coronavirus disease 2019 (COVID-19) asymptomatic cases are hard to identify, impeding transmissibility estimation. The value of COVID-19 transmissibility is worth further elucidation for key assumptions in further modelling studies. Through a population-based surveillance network, we collected data on 1342 confirmed cases with a 90-days follow-up for all asymptomatic cases. An age-stratified compartmental model containing contact information was built to estimate the transmissibility of symptomatic and asymptomatic COVID-19 cases. The difference in transmissibility of a symptomatic and asymptomatic case depended on age and was most distinct for the middle-age groups. The asymptomatic cases had a 66.7% lower transmissibility rate than symptomatic cases, and 74.1% (95% CI 65.9-80.7) of all asymptomatic cases were missed in detection. The average proportion of asymptomatic cases was 28.2% (95% CI 23.0-34.6). Simulation demonstrated that the burden of asymptomatic transmission increased as the epidemic continued and could potentially dominate total transmission. The transmissibility of asymptomatic COVID-19 cases is high and asymptomatic COVID-19 cases play a significant role in outbreaks.


Subject(s)
COVID-19 , Epidemics , Humans , Middle Aged , Computer Simulation , COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks , SARS-CoV-2 , Asymptomatic Infections
2.
Biosensors (Basel) ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2081892

ABSTRACT

The focus of this study was to investigate the detection of neutralizing antibodies (Nabs) in maternal serum and cord blood as the targeted samples by employing a lateral flow immunoassay combined with a spectrum reader (LFI-SR) and the correlation of Nab protection against different types of SARS-CoV-2. We enrolled 20 pregnant women who were vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected 40 samples during delivery. We used an LFI-SR for the level of spike protein receptor binding domain antibody (SRBD IgG) as Nabs and examined the correlation of the SRBD IgG concentration and Nab inhibition rates (NabIR) via enzyme-linked immunosorbent assays (ELISA). The LFI-SR had high confidence for the SRBD IgG level (p < 0.0001). Better NabIR were found in wild-type SARS-CoV-2 (WT) compared to Delta-type (DT) and Omicron-type (OT). Women with two-dose vaccinations demonstrated greater NabIR than those with a single dose. The cut-off value of the SRBD IgG level by the LFI-SR for NabIR to DT (≥30%; ≥70%) was 60.15 and 150.21 ng/mL for mothers (both p = 0.005), and 156.31 (p = 0.011) and 230.20 ng/mL (p = 0.006) for babies, respectively. An additional vaccine booster may be considered for those mothers with SRBD IgG levels < 60.15 ng/mL, and close protection should be given for those neonates with SRBD IgG levels < 150.21 ng/mL, since there is no available vaccine for them.


Subject(s)
COVID-19 , SARS-CoV-2 , Pregnancy , Infant, Newborn , Humans , Female , Spike Glycoprotein, Coronavirus , Pregnant Women , Antibodies, Viral , Immunoglobulin G , COVID-19/diagnosis , Immunoassay , Antibodies, Neutralizing
3.
Front Med (Lausanne) ; 9: 827261, 2022.
Article in English | MEDLINE | ID: covidwho-1809418

ABSTRACT

Objectives: An accurate prognostic score to predict mortality for adults with COVID-19 infection is needed to understand who would benefit most from hospitalizations and more intensive support and care. We aimed to develop and validate a two-step score system for patient triage, and to identify patients at a relatively low level of mortality risk using easy-to-collect individual information. Design: Multicenter retrospective observational cohort study. Setting: Four health centers from Virginia Commonwealth University, Georgetown University, the University of Florida, and the University of California, Los Angeles. Patients: Coronavirus Disease 2019-confirmed and hospitalized adult patients. Measurements and Main Results: We included 1,673 participants from Virginia Commonwealth University (VCU) as the derivation cohort. Risk factors for in-hospital death were identified using a multivariable logistic model with variable selection procedures after repeated missing data imputation. A two-step risk score was developed to identify patients at lower, moderate, and higher mortality risk. The first step selected increasing age, more than one pre-existing comorbidities, heart rate >100 beats/min, respiratory rate ≥30 breaths/min, and SpO2 <93% into the predictive model. Besides age and SpO2, the second step used blood urea nitrogen, absolute neutrophil count, C-reactive protein, platelet count, and neutrophil-to-lymphocyte ratio as predictors. C-statistics reflected very good discrimination with internal validation at VCU (0.83, 95% CI 0.79-0.88) and external validation at the other three health systems (range, 0.79-0.85). A one-step model was also derived for comparison. Overall, the two-step risk score had better performance than the one-step score. Conclusions: The two-step scoring system used widely available, point-of-care data for triage of COVID-19 patients and is a potentially time- and cost-saving tool in practice.

4.
JAMA Intern Med ; 181(10): 1343-1350, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1368408

ABSTRACT

Importance: Much remains unknown about the transmission dynamics of COVID-19. How the severity of the index case and timing of exposure is associated with disease in close contacts of index patients with COVID-19 and clinical presentation in those developing disease is not well elucidated. Objectives: To investigate the association between the timing of exposure and development of disease among close contacts of index patients with COVID-19 and to evaluate whether the severity of the index case is associated with clinical presentation in close contacts who develop COVID-19. Design, Setting, and Participants: This study used a large, population-based cohort of 730 individuals (index patients) who received a diagnosis of COVID-19 in Zhejiang Province, China, from January 8 to July 30, 2020, along with a contact tracing surveillance program. Field workers visited 8852 close contacts of the index patients and evaluated them for COVID-19 through August 2020. A timeline was constructed to characterize different exposure periods between index patients and their contacts. Main Outcomes and Measures: The primary outcome was the attack rate of COVID-19, defined as the total number of new COVID-19 cases diagnosed among contacts of index patients divided by the total number of exposed contacts. A secondary outcome was asymptomatic clinical presentation among infected contacts. Relative risks were calculated to investigate risk factors for COVID-19 among contacts and asymptomatic clinical presentation among infected contacts. Results: Among 8852 close contacts (4679 male contacts [52.9%]; median age, 41 years [interquartile range, 28-54 years]) of 730 index patients (374 male patients [51.2%]; median age, 46 years [interquartile range, 36-56 years]), contacts were at highest risk of COVID-19 if they were exposed between 2 days before and 3 days after the index patient's symptom onset, peaking at day 0 (adjusted relative risk [ARR], 1.3; 95% CI, 1.2-1.5). Compared with being exposed to an asymptomatic index patient, the risk of COVID-19 among contacts was higher when they were exposed to index patients with mild (ARR, 4.0; 95% CI, 1.8-9.1) and moderate (ARR, 4.3; 95% CI, 1.9-9.7) cases of COVID-19. As index case severity increased, infected contacts were less likely to be asymptomatic (exposed to patient with mild COVID-19: ARR, 0.3; 95% CI, 0.1-0.9; exposed to patient with moderate COVID-19: ARR, 0.3; 95% CI, 0.1-0.8). Conclusions and Relevance: This cohort study found that individuals with COVID-19 were most infectious a few days before and after symptom onset. Infected contacts of asymptomatic index patients were less likely to present with COVID-19 symptoms, suggesting that quantity of exposure may be associated with clinical presentation in close contacts.


Subject(s)
COVID-19/transmission , Contact Tracing , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/diagnosis , COVID-19/epidemiology , China , Cohort Studies , Female , Humans , Male , Middle Aged , Risk Factors , Symptom Assessment , Time Factors , Young Adult
5.
Clin Infect Dis ; 73(3): 542-544, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338667

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic may impede global tuberculosis elimination goals. In Jiangsu Province, China, tuberculosis notifications dropped 52% in 2020 compared to 2015-2019. Treatment completion and screening for drug resistance decreased continuously in 2020. Urgent attention must be paid to tuberculosis control efforts during and after the COVID-19 pandemic.


Subject(s)
COVID-19 , Tuberculosis , China/epidemiology , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/epidemiology
6.
Epidemics ; 36: 100483, 2021 09.
Article in English | MEDLINE | ID: covidwho-1306958

ABSTRACT

INTRODUCTION: Most countries are dependent on nonpharmaceutical public health interventions such as social distancing, contact tracing, and case isolation to mitigate COVID-19 spread until medicines or vaccines widely available. Minimal research has been performed on the independent and combined impact of each of these interventions based on empirical case data. METHODS: We obtained data from all confirmed COVID-19 cases from January 7th to February 22nd 2020 in Zhejiang Province, China, to fit an age-stratified compartmental model using human contact information before and during the outbreak. The effectiveness of social distancing, contact tracing, and case isolation was studied and compared in simulation. We also simulated a two-phase reopening scenario to assess whether various strategies combining nonpharmaceutical interventions are likely to achieve population-level control of a second-wave epidemic. RESULTS: Our study sample included 1,218 symptomatic cases with COVID-19, of which 664 had no inter-province travel history. Results suggest that 36.5 % (95 % CI, 12.8-57.1) of contacts were quarantined, and approximately five days (95 % CI, 2.2-11.0) were needed to detect and isolate a case. As contact networks would increase after societal and economic reopening, avoiding a second wave without strengthening nonpharmaceutical interventions compared to the first wave it would be exceedingly difficult. CONCLUSIONS: Continuous attention and further improvement of nonpharmaceutical interventions are needed in second-wave prevention. Specifically, contact tracing merits further attention.


Subject(s)
COVID-19 , Epidemics , Contact Tracing , Humans , Physical Distancing , SARS-CoV-2
8.
Innovation (Camb) ; 1(2): 100025, 2020 Aug 28.
Article in English | MEDLINE | ID: covidwho-1057496

ABSTRACT

This commentary presents an analysis of the containment and mitigation efforts by different countries against the recent COVID-19 pandemic. It was developed in response to the Georgia government's decision to relieve lock down restrictions. The article also provides recommendations based on interventions that have been observed to be effective, which will guide decision making for not only Georgia but other states and countries that are currently struggling to manage this outbreak.

9.
JAMA Intern Med ; 180(12): 1665-1671, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-738931

ABSTRACT

Importance: Evidence of whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), can be transmitted as an aerosol (ie, airborne) has substantial public health implications. Objective: To investigate potential transmission routes of SARS-CoV-2 infection with epidemiologic evidence from a COVID-19 outbreak. Design, Setting, and Participants: This cohort study examined a community COVID-19 outbreak in Zhejiang province. On January 19, 2020, 128 individuals took 2 buses (60 [46.9%] from bus 1 and 68 [53.1%] from bus 2) on a 100-minute round trip to attend a 150-minute worship event. The source patient was a passenger on bus 2. We compared risks of SARS-CoV-2 infection among at-risk individuals taking bus 1 (n = 60) and bus 2 (n = 67 [source patient excluded]) and among all other individuals (n = 172) attending the worship event. We also divided seats on the exposed bus into high-risk and low-risk zones according to the distance from the source patient and compared COVID-19 risks in each zone. In both buses, central air conditioners were in indoor recirculation mode. Main Outcomes and Measures: SARS-CoV-2 infection was confirmed by reverse transcription polymerase chain reaction or by viral genome sequencing results. Attack rates for SARS-CoV-2 infection were calculated for different groups, and the spatial distribution of individuals who developed infection on bus 2 was obtained. Results: Of the 128 participants, 15 (11.7%) were men, 113 (88.3%) were women, and the mean age was 58.6 years. On bus 2, 24 of the 68 individuals (35.3% [including the index patient]) received a diagnosis of COVID-19 after the event. Meanwhile, none of the 60 individuals in bus 1 were infected. Among the other 172 individuals at the worship event, 7 (4.1%) subsequently received a COVID-19 diagnosis. Individuals in bus 2 had a 34.3% (95% CI, 24.1%-46.3%) higher risk of getting COVID-19 compared with those in bus 1 and were 11.4 (95% CI, 5.1-25.4) times more likely to have COVID-19 compared with all other individuals attending the worship event. Within bus 2, individuals in high-risk zones had moderately, but nonsignificantly, higher risk for COVID-19 compared with those in the low-risk zones. The absence of a significantly increased risk in the part of the bus closer to the index case suggested that airborne spread of the virus may at least partially explain the markedly high attack rate observed. Conclusions and Relevance: In this cohort study and case investigation of a community outbreak of COVID-19 in Zhejiang province, individuals who rode a bus to a worship event with a patient with COVID-19 had a higher risk of SARS-CoV-2 infection than individuals who rode another bus to the same event. Airborne spread of SARS-CoV-2 seems likely to have contributed to the high attack rate in the exposed bus. Future efforts at prevention and control must consider the potential for airborne spread of the virus.


Subject(s)
COVID-19 , Communicable Disease Control/methods , Community-Acquired Infections , Motor Vehicles/statistics & numerical data , SARS-CoV-2 , Transportation/methods , Air Pollution , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , China/epidemiology , Cohort Studies , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/prevention & control , Community-Acquired Infections/transmission , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Female , Humans , Male , Middle Aged , Risk Assessment , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
10.
Open Forum Infect Dis ; 7(6): ofaa231, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-622578

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2, the pathogen causing novel coronavirus disease of 2019 (COVID-19), efficiently spreads from person to person in close contact settings. Transmission among casual contacts in settings such as during social gatherings is not well understood. METHODS: We report several transmission events to both close and casual contacts from a cluster of 7 COVID-19 cases occurring from mid-January to early February 2020. A total of 539 social and family contacts of the index patient's, including members of a 2-day wedding and a family party, were contacted and screened through epidemiologic surveys. The clinical progression of all cases is described. RESULTS: We estimate the secondary attack rate among close contacts to be 29% (2 of 7) and for the casual contacts to be 0.6% (3 of 473). The incubation period of our case cluster was 4-12 days (median, 7 days). CONCLUSIONS: Transmission efficiency among close contacts was higher than among casual contacts; however, transmission from second-generation cases may help spread the virus during the incubation period.

SELECTION OF CITATIONS
SEARCH DETAIL